In this paper we tackle the issue of generating Mamdani fuzzy rule-based systems with optimal trade-offs between complexity and accuracy by using a multi-objective genetic algorithm, which concurrently learns rule base, granularity of the input and output partitions and membership function parameters. To this aim, we exploit a chromosome composed of three parts, which codify, respectively, the rule base, and, for each variable, the number of fuzzy sets and the parameters of a piecewise linear transformation of the membership functions. We show the encouraging results obtained on a real world regression problem.

Learning Concurrently Granularity, Membership Function Parameters and Rules of Mamdani Fuzzy Rule-based Systems

ANTONELLI, MICHELA;Ducange P.;LAZZERINI, BEATRICE;MARCELLONI, FRANCESCO
2009-01-01

Abstract

In this paper we tackle the issue of generating Mamdani fuzzy rule-based systems with optimal trade-offs between complexity and accuracy by using a multi-objective genetic algorithm, which concurrently learns rule base, granularity of the input and output partitions and membership function parameters. To this aim, we exploit a chromosome composed of three parts, which codify, respectively, the rule base, and, for each variable, the number of fuzzy sets and the parameters of a piecewise linear transformation of the membership functions. We show the encouraging results obtained on a real world regression problem.
2009
9789899507968
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/196260
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact