We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99M(circle dot) and total masses of 25-100M(circle dot). We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M(circle dot) <= m(1), m(2) <= 28M(circle dot) binary black-hole systems with negligible spin to be no more than 2.0 Mpc(-3) Myr(-1) at 90% confidence.
Search for gravitational waves from binary black hole inspiral, merger, and ringdown
BOSCHI, VALERIO;DI LIETO, ALBERTO;FERRANTE, ISIDORO;FIDECARO, FRANCESCO;Passaquieti R.;POGGIANI, ROSA;TONCELLI, ALESSANDRA;TONELLI, MAURO;
2011-01-01
Abstract
We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99M(circle dot) and total masses of 25-100M(circle dot). We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M(circle dot) <= m(1), m(2) <= 28M(circle dot) binary black-hole systems with negligible spin to be no more than 2.0 Mpc(-3) Myr(-1) at 90% confidence.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.