We have recently identified mesodermal progenitor cells (MPCs) isolated from adult human bone marrow. These cells show unusual phenotypes, having putative embryonic markers and aldehyde dehydrogenase (ALDH) activity. Interestingly, these resting cells, which have been selected by culturing them in the presence of adult human serum, can easily be induced to differentiate into mature mesenchymal stromal cells (MSCs) after substituting the adult human serum for fetal bovine serum (FBS) or human cord serum. MPC-derived MSCs are, in turn, able to differentiate toward osteoblasts, chondrocytes, and adipocytes. Furthermore, MPCs are able to differentiate into endothelial cells. MPCs have been proven to be strongly adherent to plastic culture bottles and to be trypsin-resistant. In the present article, we show a simple and inexpensive method to isolate highly selected mesodermal progenitors from bone marrow or cord blood. The optimization of standard culture conditions (using commercial human AB sera and appropriate concentrations for cell seeding in plastics) allows a pure population of MPCs to be obtained even after a short culture period. We believe that this simple, repeatable, and standardized method will facilitate studies on MPCs.
Selective Culture of Mesodermal Progenitor Cells (MPCs)
TROMBI, LUISA;PACINI, SIMONE;MONTALI, MARINA;CHIELLINI, FEDERICA;PETRINI, MARIO
2009-01-01
Abstract
We have recently identified mesodermal progenitor cells (MPCs) isolated from adult human bone marrow. These cells show unusual phenotypes, having putative embryonic markers and aldehyde dehydrogenase (ALDH) activity. Interestingly, these resting cells, which have been selected by culturing them in the presence of adult human serum, can easily be induced to differentiate into mature mesenchymal stromal cells (MSCs) after substituting the adult human serum for fetal bovine serum (FBS) or human cord serum. MPC-derived MSCs are, in turn, able to differentiate toward osteoblasts, chondrocytes, and adipocytes. Furthermore, MPCs are able to differentiate into endothelial cells. MPCs have been proven to be strongly adherent to plastic culture bottles and to be trypsin-resistant. In the present article, we show a simple and inexpensive method to isolate highly selected mesodermal progenitors from bone marrow or cord blood. The optimization of standard culture conditions (using commercial human AB sera and appropriate concentrations for cell seeding in plastics) allows a pure population of MPCs to be obtained even after a short culture period. We believe that this simple, repeatable, and standardized method will facilitate studies on MPCs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.