We consider the initial–boundary value problem for the 3D Navier–Stokes equations. The physical domain is a bounded open set with a smooth boundary on which we assume a condition of free-boundary type. We show that if a suitable hypothesis on the vorticity direction is assumed, then weak solutions are regular. The main tool we use in the proof is an explicit representation of the velocity in terms of the vorticity, by means of Green’s matrices.

Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary

BEIRAO DA VEIGA, HUGO;BERSELLI, LUIGI CARLO
2009-01-01

Abstract

We consider the initial–boundary value problem for the 3D Navier–Stokes equations. The physical domain is a bounded open set with a smooth boundary on which we assume a condition of free-boundary type. We show that if a suitable hypothesis on the vorticity direction is assumed, then weak solutions are regular. The main tool we use in the proof is an explicit representation of the velocity in terms of the vorticity, by means of Green’s matrices.
2009
BEIRAO DA VEIGA, Hugo; Berselli, LUIGI CARLO
File in questo prodotto:
File Dimensione Formato  
JDE2009.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 298.14 kB
Formato Adobe PDF
298.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/196978
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 62
social impact