The Perona-Malik equation is a celebrated example of forward-backward parabolic equation. The forward behavior takes place in the so-called subcritical region, in which the gradient of the solution is smaller than a fixed threshold. In this paper we show that this subcritical region evolves in a different way in the following three cases: dimension one, radial solutions in dimension greater than one, general solutions in dimension greater than one. In the first case subcritical regions do not shrink, that is, that they expand with a nonnegative rate. In the second case they expand with a positive rate and always spread over the whole domain after a finite time, depending only on the (outer) radius of the domain. As a by-product, we obtain a nonexistence result for global-in-time classical radial solutions with large enough gradient. In the third case we show an example where subcritical regions do not expand. Our proofs exploit comparison principles for suitable degenerate and nonsmooth free boundary problems.

On the evolution of subcritical regions for the Perona-Malik equation

GHISI, MARINA;GOBBINO, MASSIMO
2011

Abstract

The Perona-Malik equation is a celebrated example of forward-backward parabolic equation. The forward behavior takes place in the so-called subcritical region, in which the gradient of the solution is smaller than a fixed threshold. In this paper we show that this subcritical region evolves in a different way in the following three cases: dimension one, radial solutions in dimension greater than one, general solutions in dimension greater than one. In the first case subcritical regions do not shrink, that is, that they expand with a nonnegative rate. In the second case they expand with a positive rate and always spread over the whole domain after a finite time, depending only on the (outer) radius of the domain. As a by-product, we obtain a nonexistence result for global-in-time classical radial solutions with large enough gradient. In the third case we show an example where subcritical regions do not expand. Our proofs exploit comparison principles for suitable degenerate and nonsmooth free boundary problems.
Ghisi, Marina; Gobbino, Massimo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/197047
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact