In this article we provide an overview of the intersection between amyotrophic lateral sclerosis (ALS) and the autophagy pathway and discuss the potential protective effects of lithium through mechanisms that recruit autophagy and other effects. The autophagy pathway is recruited during motor neuron (MN) death both in vitro and in vivo. Despite a few controversial issues concerning the significance (detrimental/protective) of autophagy in ALS, recent findings indicate a protective role. Lithium in low doses is a well-known autophagy inducer that clears misfolded proteins and altered mitochondria from MNs. Moreover, lithium preserves mitochondria and sustains their genesis. This effect is replicated by rapamycin, which is an autophagy inducer but with a different mechanism from lithium. Lithium also increases the number of Renshaw cells that are affected early during the progression of experimental ALS. Again, lithium has been reported to decrease glial proliferation in the ALS spinal cord and induces sprouting in corticospinal fibers.

Autophagy, lithium, and amyotrophic lateral sclerosis

PASQUALI, LIVIA;PAPARELLI, ANTONIO;FORNAI, FRANCESCO
2009-01-01

Abstract

In this article we provide an overview of the intersection between amyotrophic lateral sclerosis (ALS) and the autophagy pathway and discuss the potential protective effects of lithium through mechanisms that recruit autophagy and other effects. The autophagy pathway is recruited during motor neuron (MN) death both in vitro and in vivo. Despite a few controversial issues concerning the significance (detrimental/protective) of autophagy in ALS, recent findings indicate a protective role. Lithium in low doses is a well-known autophagy inducer that clears misfolded proteins and altered mitochondria from MNs. Moreover, lithium preserves mitochondria and sustains their genesis. This effect is replicated by rapamycin, which is an autophagy inducer but with a different mechanism from lithium. Lithium also increases the number of Renshaw cells that are affected early during the progression of experimental ALS. Again, lithium has been reported to decrease glial proliferation in the ALS spinal cord and induces sprouting in corticospinal fibers.
Pasquali, Livia; Longone, P; Isidoro, C; Ruggieri, S; Paparelli, Antonio; Fornai, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/197601
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 72
social impact