We present a new implementation of the polarizable continuum model PCM at the multiconfigurational self-consistent field MCSCF level. This new MCSCF-PCM implementation is based on a second-order algorithm for the optimization of the wave function of the solvated molecule. The robust convergence properties of this approach allows for fast convergence of the PCM-MCSCF wave function for large MCSCF expansions as well as for excited states of solvated molecules. Our implementation also enables us to treat nonequilibrium solvation—that is, to treat excited molecular states generated in a fast excitation process such that not all degrees of freedom of the solvent have relaxed. To demonstrate the applicability of the approach we present calculations of solvation effects on 1,3-dipolar systems and on the ground and excited states of methylenecyclopropene.

A Second-Order, Quadratically Convergent Multiconfigurational Self-Consistent Field Polarizable Continuum Model for Equilibrium and Non-Equilibrium Solvation

MENNUCCI, BENEDETTA;TOMASI, IACOPO
2002

Abstract

We present a new implementation of the polarizable continuum model PCM at the multiconfigurational self-consistent field MCSCF level. This new MCSCF-PCM implementation is based on a second-order algorithm for the optimization of the wave function of the solvated molecule. The robust convergence properties of this approach allows for fast convergence of the PCM-MCSCF wave function for large MCSCF expansions as well as for excited states of solvated molecules. Our implementation also enables us to treat nonequilibrium solvation—that is, to treat excited molecular states generated in a fast excitation process such that not all degrees of freedom of the solvent have relaxed. To demonstrate the applicability of the approach we present calculations of solvation effects on 1,3-dipolar systems and on the ground and excited states of methylenecyclopropene.
R., Cammi; Mennucci, Benedetta; K., Ruud; L., Frediani; K. V., Mikkelsen; Tomasi, Iacopo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/199327
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? ND
social impact