Until now, no data are present in literature about the prototype Th1 chemokine (C-X-C motif) ligand 10 (CXCL10) in anaplastic thyroid cancer (ATC). This study aimed to test in "primary human ATC cells" (ANA) vs "normal thyroid follicular cells" (TFC): (a) CXCL10 secretion basally and after interferon (IFN)-γ and/or tumor necrosis factor (TNF)-α stimulation; (b) peroxisome proliferator-activated receptor (PPAR)-γ activation by thiazolidinediones, rosiglitazone or pioglitazone, on CXCL10 secretion, on proliferation and apoptosis in ANA. We demonstrate that: (a) ANA, but not TFC, produced basally CXCL10, and did so in half of cases; (b) IFN-γ stimulated dose-dependently CXCL10, in ANA and TFC; (c) TNF-α did not induce CXCL10 secretion, in ANA and TFC; (d) IFN-γ+TNF-α induced a synergistic but variable release of CXCL10 in the different ANA preparations, while it was more reproducible in TFC; (e) rosiglitazone action on CXCL10 in ANA was inhibitory in 2/6, stimulatory in 1/6 and nil in 3/6, whereas it was inhibitory in TFC; (f) rosiglitazone inhibition of proliferation in ANA was not associated with the effect on CXCL10; (g) nuclear factor-κB and ERK1/2 were basally activated in ANA, increased by IFN-γ+TNF-α, and rosiglitazone inhibited that activation. On the whole, the present data first show that ANA cells are able to produce CXCL10, basally and under the influence of cytokines. However, the pattern of modulation by IFN-γ, TNF-α or thiazolidinediones is extremely variable, suggesting that the intracellular pathways involved in the chemokine modulation in ATC have different types of deregulation.

Variable modulation by cytokines and thiazolidinediones of the prototype Th1 chemokine CXCL10 in anaplastic thyroid cancer.

ANTONELLI, ALESSANDRO;Ferrari SM;Fallahi P;PIAGGI, SIMONA;BASOLO, FULVIO;FERRANNINI, ELEUTERIO;MICCOLI, PAOLO
2012-01-01

Abstract

Until now, no data are present in literature about the prototype Th1 chemokine (C-X-C motif) ligand 10 (CXCL10) in anaplastic thyroid cancer (ATC). This study aimed to test in "primary human ATC cells" (ANA) vs "normal thyroid follicular cells" (TFC): (a) CXCL10 secretion basally and after interferon (IFN)-γ and/or tumor necrosis factor (TNF)-α stimulation; (b) peroxisome proliferator-activated receptor (PPAR)-γ activation by thiazolidinediones, rosiglitazone or pioglitazone, on CXCL10 secretion, on proliferation and apoptosis in ANA. We demonstrate that: (a) ANA, but not TFC, produced basally CXCL10, and did so in half of cases; (b) IFN-γ stimulated dose-dependently CXCL10, in ANA and TFC; (c) TNF-α did not induce CXCL10 secretion, in ANA and TFC; (d) IFN-γ+TNF-α induced a synergistic but variable release of CXCL10 in the different ANA preparations, while it was more reproducible in TFC; (e) rosiglitazone action on CXCL10 in ANA was inhibitory in 2/6, stimulatory in 1/6 and nil in 3/6, whereas it was inhibitory in TFC; (f) rosiglitazone inhibition of proliferation in ANA was not associated with the effect on CXCL10; (g) nuclear factor-κB and ERK1/2 were basally activated in ANA, increased by IFN-γ+TNF-α, and rosiglitazone inhibited that activation. On the whole, the present data first show that ANA cells are able to produce CXCL10, basally and under the influence of cytokines. However, the pattern of modulation by IFN-γ, TNF-α or thiazolidinediones is extremely variable, suggesting that the intracellular pathways involved in the chemokine modulation in ATC have different types of deregulation.
2012
Antonelli, Alessandro; Ferrari, Sm; Fallahi, P; Piaggi, Simona; Di Domenicantonio, A; Galleri, D; Santarpia, L; Basolo, Fulvio; Ferrannini, Eleuterio;...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/199740
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 42
social impact