We have developed a multi-classifier system for automatic classification of pulmonary nodules in lung CT (Computed Tomography) images. The system consists of a set of independent modules, each emulating a radiologist of a team, and a further module aimed at appropriately combining theradiologists' opinions. In the experiments we obtained a sensitivity of 95% against a specificity of 91.33%, adopting a combiner based on the decision templates technique.

A multi-classifier system for pulmonary nodule classification

ANTONELLI, MICHELA;COCOCCIONI, MARCO;LAZZERINI, BEATRICE;MARCELLONI, FRANCESCO;
2008

Abstract

We have developed a multi-classifier system for automatic classification of pulmonary nodules in lung CT (Computed Tomography) images. The system consists of a set of independent modules, each emulating a radiologist of a team, and a further module aimed at appropriately combining theradiologists' opinions. In the experiments we obtained a sensitivity of 95% against a specificity of 91.33%, adopting a combiner based on the decision templates technique.
9780769531656
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/200510
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact