In this paper a class of Boundary Value Methods obtained as an extension of the Numerov's method is proposed for the numerical approximation of the eigenvalues of regular Sturm-Liouville problems subject to Dirichlet boundary conditions. It is proved that the error in the so obtained estimate of the kth eigenvalue behaves as O (k^(p + 1) h^(p - 1/2)) + O (k^(p+2) h^p), where p is the order of accuracy of the method and h is the discretization stepsize. Numerical results comparing the performances of the new matrix methods with that of the corrected Numerov's method are also reported.
Autori interni: | |
Autori: | ACETO L; MAGHERINI C; GHELARDONI P |
Titolo: | Boundary Value Methods as an extension of Numerov's method for Sturm–Liouville eigenvalue estimates |
Anno del prodotto: | 2009 |
Digital Object Identifier (DOI): | 10.1016/j.apnum.2008.11.005 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.