Gemcitabine and pemetrexed are effective agents in the treatment of non-small-cell lung cancer (NSCLC), and the present study investigates cellular and genetic aspects of their interaction against A549, Calu-1, and Calu-6 cells. Cells were treated with pemetrexed and gemcitabine, and their interaction was assessed using the combination index. The role of drug metabolism in gemcitabine cytotoxicity was examined with inhibitors of deoxycytidine kinase (dCK), 5'-nucleotidase, and cytidine deaminase, whereas the role of pemetrexed targets, thymidylate synthase (TS), dihydrofolate reductase (DHFR), and glycinamide ribonucleotide formyltransferase (GARFT) in drug chemosensitivity was analyzed in cytotoxicity rescue studies. The effect of gemcitabine and pemetrexed on Akt phosphorylation was investigated with enzyme-linked immunosorbent assay, whereas quantitative polymerase chain reaction (PCR) was used to study target gene-expression profiles and its modulation by each drug. Synergistic cytotoxicity was demonstrated, and pemetrexed significantly decreased the amount of phosphorylated Akt, enhanced apoptosis, and increased the expression of dCK in A549 and Calu-6 cells, as well as the expression of the human nucleoside equilibrative transporter 1 (hENT1) in all cell lines. PCR demonstrated a correlation between dCK expression and gemcitabine sensitivity, whereas expression of TS, DHFR, and GARFT was predictive of pemetrexed chemosensitivity. These data demonstrated that 1) gemcitabine and pemetrexed synergistically interact against NSCLC cells through the suppression of Akt phosphorylation and induction of apoptosis; 2) the gene expression profile of critical genes may predict for drug chemosensitivity; and 3) pemetrexed enhances dCK and hENT1 expression, thus suggesting the role of gene-expression modulation for rational development of chemotherapy combinations.

Cellular and pharmacogenetics foundation of synergistic interaction of pemetrexed and gemcitabine in human non-small cell lung cancer cells

PASQUALETTI G;DANESI, ROMANO
2005

Abstract

Gemcitabine and pemetrexed are effective agents in the treatment of non-small-cell lung cancer (NSCLC), and the present study investigates cellular and genetic aspects of their interaction against A549, Calu-1, and Calu-6 cells. Cells were treated with pemetrexed and gemcitabine, and their interaction was assessed using the combination index. The role of drug metabolism in gemcitabine cytotoxicity was examined with inhibitors of deoxycytidine kinase (dCK), 5'-nucleotidase, and cytidine deaminase, whereas the role of pemetrexed targets, thymidylate synthase (TS), dihydrofolate reductase (DHFR), and glycinamide ribonucleotide formyltransferase (GARFT) in drug chemosensitivity was analyzed in cytotoxicity rescue studies. The effect of gemcitabine and pemetrexed on Akt phosphorylation was investigated with enzyme-linked immunosorbent assay, whereas quantitative polymerase chain reaction (PCR) was used to study target gene-expression profiles and its modulation by each drug. Synergistic cytotoxicity was demonstrated, and pemetrexed significantly decreased the amount of phosphorylated Akt, enhanced apoptosis, and increased the expression of dCK in A549 and Calu-6 cells, as well as the expression of the human nucleoside equilibrative transporter 1 (hENT1) in all cell lines. PCR demonstrated a correlation between dCK expression and gemcitabine sensitivity, whereas expression of TS, DHFR, and GARFT was predictive of pemetrexed chemosensitivity. These data demonstrated that 1) gemcitabine and pemetrexed synergistically interact against NSCLC cells through the suppression of Akt phosphorylation and induction of apoptosis; 2) the gene expression profile of critical genes may predict for drug chemosensitivity; and 3) pemetrexed enhances dCK and hENT1 expression, thus suggesting the role of gene-expression modulation for rational development of chemotherapy combinations.
Giovannetti, E; Mey, V; Nannizzi, S; Pasqualetti, G; Marini, L; DEL TACCA, M; Danesi, Romano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/202099
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 46
  • Scopus 170
  • ???jsp.display-item.citation.isi??? 164
social impact