The obvious fact that the eigenfunctions $\psi(\lambda)$ of the Hamiltonian $H(\lambda)=H_0+\lambda V$ are determined up to a phase factor $\exp\big(i\alpha(\lambda)\big)$ can be used to exhibit a simple method to find the correction $\epsilon_n$ of order $n$ to a non-degenerate energy level. Rules are given to write down all the terms which build up $\epsilon_n$ in terms of $\epsilon_k,\,k\leq n-2$, and series of matrix elements of the perturbation $V$.

A simple iterative method to write the terms of any order of perturbation theory in quantum mechanics

BRACCI, LUCIANO;PICASSO, LUIGI ETTORE
2012

Abstract

The obvious fact that the eigenfunctions $\psi(\lambda)$ of the Hamiltonian $H(\lambda)=H_0+\lambda V$ are determined up to a phase factor $\exp\big(i\alpha(\lambda)\big)$ can be used to exhibit a simple method to find the correction $\epsilon_n$ of order $n$ to a non-degenerate energy level. Rules are given to write down all the terms which build up $\epsilon_n$ in terms of $\epsilon_k,\,k\leq n-2$, and series of matrix elements of the perturbation $V$.
Bracci, Luciano; Picasso, LUIGI ETTORE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/202209
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact