fMRI is used to investigate brain functional connectivity after removing nonneural components by General Linear Model (GLM) approach with a reference ventricle-derived signal as covariate. Ventricle signals are related to low-frequency modulations of cardiac and respiratory rhythms, which are nonstationary activities. Herein, we employed an adaptive filtering approach to improve removing physiological noise from BOLD signals. Comparisons between filtering approaches were performed by evaluating the amount of removed signal variance and the connectivity between homologous contralateral regions of interest (ROIs). The global connectivity between ROIs was estimated with a generalized correlation named RV coefficient. The mean ROI decrease of variance was -52% and -11%, for adaptive filtering and GLM, respectively. Adaptive filtering led to higher connectivity between grey matter ROIs than that obtained with GLM. Thus, adaptive filtering is a feasible method for removing the physiological noise in the low frequency band and to highlight resting state functional networks.

Adaptive Filtering for Removing Nonstationary Physiological Noise from Resting State fMRI BOLD Signals

Piaggi P;Menicucci D;GENTILI, CLAUDIO;HANDJARAS, GIACOMO;GUAZZELLI, MARIO;GEMIGNANI, ANGELO;LANDI, ALBERTO
2011

Abstract

fMRI is used to investigate brain functional connectivity after removing nonneural components by General Linear Model (GLM) approach with a reference ventricle-derived signal as covariate. Ventricle signals are related to low-frequency modulations of cardiac and respiratory rhythms, which are nonstationary activities. Herein, we employed an adaptive filtering approach to improve removing physiological noise from BOLD signals. Comparisons between filtering approaches were performed by evaluating the amount of removed signal variance and the connectivity between homologous contralateral regions of interest (ROIs). The global connectivity between ROIs was estimated with a generalized correlation named RV coefficient. The mean ROI decrease of variance was -52% and -11%, for adaptive filtering and GLM, respectively. Adaptive filtering led to higher connectivity between grey matter ROIs than that obtained with GLM. Thus, adaptive filtering is a feasible method for removing the physiological noise in the low frequency band and to highlight resting state functional networks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/202502
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 21
social impact