Electronic nose (e-nose) architectures usually consist of several modules that process various tasks such as control, data acquisition, data filtering, feature selection and pattern analysis. Heterogeneous techniques derived from chemometrics, neural networks, and fuzzy rules used to implement such tasks may lead to issues concerning module interconnection and cooperation. Moreover, a new learning phase is mandatory once new measurements have been added to the dataset, thus causing changes in the previously derived model. Consequently, if a loss in the previous learning occurs (catastrophic interference), real-time applications of e-noses are limited. To overcome these problems this paper presents an architecture for dynamic and efficient management of multi-transducer data processing techniques and for saving an associative short-term memory of the previously learned model. The architecture implements an artificial model of a hippocampus-based working memory, enabling the system to be ready for real-time applications. Starting from the base models available in the architecture core, dedicated models for neurons, maps and connections were tailored to an artificial olfactory system devoted to analysing olive oil. In order to verify the ability of the processing architecture in associative and short-term memory, a paired-associate learning test was applied. The avoidance of catastrophic interference was observed.

A processing architecture for associative short-term memory in electronic noses

PIOGGIA, GIOVANNI;FERRO, MARCELLO;DI FRANCESCO, FABIO;DE ROSSI, DANILO EMILIO
2006-01-01

Abstract

Electronic nose (e-nose) architectures usually consist of several modules that process various tasks such as control, data acquisition, data filtering, feature selection and pattern analysis. Heterogeneous techniques derived from chemometrics, neural networks, and fuzzy rules used to implement such tasks may lead to issues concerning module interconnection and cooperation. Moreover, a new learning phase is mandatory once new measurements have been added to the dataset, thus causing changes in the previously derived model. Consequently, if a loss in the previous learning occurs (catastrophic interference), real-time applications of e-noses are limited. To overcome these problems this paper presents an architecture for dynamic and efficient management of multi-transducer data processing techniques and for saving an associative short-term memory of the previously learned model. The architecture implements an artificial model of a hippocampus-based working memory, enabling the system to be ready for real-time applications. Starting from the base models available in the architecture core, dedicated models for neurons, maps and connections were tailored to an artificial olfactory system devoted to analysing olive oil. In order to verify the ability of the processing architecture in associative and short-term memory, a paired-associate learning test was applied. The avoidance of catastrophic interference was observed.
2006
Pioggia, Giovanni; Ferro, Marcello; DI FRANCESCO, Fabio; DE ROSSI, DANILO EMILIO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/203292
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact