This paper provides a new approach for the analysis and eventually the classification of dynamical systems. The objective is pursued by extending the concept of the entropy of plane curves, first introduced within the theory of the thermodynamics of plane curves, to R^n space. Such a generalised entropy of a curve is used to evaluate curves that are obtained by connecting several points in the phase space. As the points change their coordinates according to the equations of a dynamical system, the entropy of the curve connecting them is used to infer the behaviour of the underlying dynamics. According to the proposed method all linear dynamical systems evolve at constant zero entropy, while higher asymptotic values characterise nonlinear systems. The approach proves to be particularly efficient when applied to chaotic systems, in which case it has common features with other classic approaches. Performances of the proposed method are tested over several benchmark problems.
Generalised Entropy of Curves for the Analysis and Classification of Dynamical Systems
BALESTRINO, ALDO;CRISOSTOMI, EMANUELE
2009-01-01
Abstract
This paper provides a new approach for the analysis and eventually the classification of dynamical systems. The objective is pursued by extending the concept of the entropy of plane curves, first introduced within the theory of the thermodynamics of plane curves, to R^n space. Such a generalised entropy of a curve is used to evaluate curves that are obtained by connecting several points in the phase space. As the points change their coordinates according to the equations of a dynamical system, the entropy of the curve connecting them is used to infer the behaviour of the underlying dynamics. According to the proposed method all linear dynamical systems evolve at constant zero entropy, while higher asymptotic values characterise nonlinear systems. The approach proves to be particularly efficient when applied to chaotic systems, in which case it has common features with other classic approaches. Performances of the proposed method are tested over several benchmark problems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.