Increasing evidence indicates that modulation of Na+⁄K+ ATPase activity is involved in forms of neuronal and synaptic plasticity. In tactile (T) neurons of the leech Hirudo medicinalis, Na+⁄K+ ATPase is the main determinant of the afterhyperpolarization (AHP), which characterizes the firing of these mechanosensory neurons. Previously, it has been reported that cAMP (3',5'-cyclic adenosine monophosphate), which mediates the effects of serotonin (5HT) in some forms of learning in the leech, negatively modulates Na+⁄K+ ATPase activity, thereby reducing the AHP amplitude in T neurons. Here, we show that a transient inhibition of Na+⁄K+ ATPase can affect the synaptic connection between two ipsilateral T neurons. Bath application of 10 nm dihydroouabain (DHO), an ouabain analogue, causes an increase in the amplitude of the synaptic potential (SP) recorded in the postsynaptic element when a test stimulus is applied in the presynaptic neuron. Iontophoretic injection of cAMP into the presynaptic T neuron also produces an increase of SP. Simulations carried out by using a computational model of the T neuron suggest that a reduction of the pump rate and a consequent depression of the AHP might facilitate the conduction of action potentials to the synaptic terminals. Moreover, nearly intact leeches injected with 10 nm DHO respond with a swimming episode more quickly to an electrical stimulation, which selectively activates T neurons exhibiting sensitization of swimming induction. Collectively, our results show that inhibition of Na+⁄K+ ATPase is critical for short-term plasticity.

Inhibition of Na+/K+ ATPase potentiates synaptic transmission in tactile sensory neurons of the leech

SCURI, ROSSANA;CATALDO, ENRICO;BRUNELLI, MARCELLO
2007-01-01

Abstract

Increasing evidence indicates that modulation of Na+⁄K+ ATPase activity is involved in forms of neuronal and synaptic plasticity. In tactile (T) neurons of the leech Hirudo medicinalis, Na+⁄K+ ATPase is the main determinant of the afterhyperpolarization (AHP), which characterizes the firing of these mechanosensory neurons. Previously, it has been reported that cAMP (3',5'-cyclic adenosine monophosphate), which mediates the effects of serotonin (5HT) in some forms of learning in the leech, negatively modulates Na+⁄K+ ATPase activity, thereby reducing the AHP amplitude in T neurons. Here, we show that a transient inhibition of Na+⁄K+ ATPase can affect the synaptic connection between two ipsilateral T neurons. Bath application of 10 nm dihydroouabain (DHO), an ouabain analogue, causes an increase in the amplitude of the synaptic potential (SP) recorded in the postsynaptic element when a test stimulus is applied in the presynaptic neuron. Iontophoretic injection of cAMP into the presynaptic T neuron also produces an increase of SP. Simulations carried out by using a computational model of the T neuron suggest that a reduction of the pump rate and a consequent depression of the AHP might facilitate the conduction of action potentials to the synaptic terminals. Moreover, nearly intact leeches injected with 10 nm DHO respond with a swimming episode more quickly to an electrical stimulation, which selectively activates T neurons exhibiting sensitization of swimming induction. Collectively, our results show that inhibition of Na+⁄K+ ATPase is critical for short-term plasticity.
2007
Scuri, Rossana; Paola, Lombardo; Cataldo, Enrico; Chiara, Ristori; Brunelli, Marcello
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/203668
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 42
social impact