We investigate the problem of joint routing and link scheduling in Time-Division Multiple Access (TDMA) Wireless Mesh Networks (WMNs) carrying real-time traffic. We propose a framework that always computes a feasible solution (i.e. a set of paths and link activations) if there exists one, by optimally solving a mixed integer-non linear problem. Such solution can be computed in minutes or tens thereof for e.g. grids of up to 4x4 nodes. We also propose heuristics based on Lagrangian decomposition to compute suboptimal solutions considerably faster and/or for larger WMNs, up to about 50 nodes. We show that the heuristic solutions are near-optimal, and we exploit them to gain insight on the schedulability in WMN, i.e. to investigate the optimal placement of one or more gateways from a delay bound perspec-tive, and to investigate how the schedulability is affected by the transmission range.
Optimal joint routing and link scheduling for real-time traffic in TDMA Wireless Mesh Networks
LENZINI, LUCIANO;LORI, ALESSANDRO;STEA, GIOVANNI
;VAGLINI, GIGLIOLA
2013-01-01
Abstract
We investigate the problem of joint routing and link scheduling in Time-Division Multiple Access (TDMA) Wireless Mesh Networks (WMNs) carrying real-time traffic. We propose a framework that always computes a feasible solution (i.e. a set of paths and link activations) if there exists one, by optimally solving a mixed integer-non linear problem. Such solution can be computed in minutes or tens thereof for e.g. grids of up to 4x4 nodes. We also propose heuristics based on Lagrangian decomposition to compute suboptimal solutions considerably faster and/or for larger WMNs, up to about 50 nodes. We show that the heuristic solutions are near-optimal, and we exploit them to gain insight on the schedulability in WMN, i.e. to investigate the optimal placement of one or more gateways from a delay bound perspec-tive, and to investigate how the schedulability is affected by the transmission range.File | Dimensione | Formato | |
---|---|---|---|
2013 ComNets.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ComNets2013LoriOAPostPrint.pdf
accesso aperto
Descrizione: Versione sottomessa post revisione
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
703.59 kB
Formato
Adobe PDF
|
703.59 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.