The tetracationic complex [Rh2(MeCN)2(Naft)4](BF4)4 (Naft = μ-1,8-naphthyridine) was found to be an efficient catalyst for the silylformylation of internal and functionalised alkynes to yield useful synthetic intermediates. The complex exhibits an unprecedented chemoselectivity towards alkyne silylformylation instead of simple hydrosilylation, as well as a good stereoselectivity. The catalytic efficiency of the complex is markedly superior compared to that of previously reported catalysts such as [View the MathML sourceRh+C7H8BPh4-] or Rh4(CO)12; incidentally, the performance of the latter catalyst was found to vary dramatically with its shelf-life, which indicates that the catalyst evolves with ageing towards other species, most notably higher nuclearity rhodium carbonyl clusters, which are more chemoselective towards silylformylation. Preliminary results on the determination of the catalytically active species in the case of complex [Rh2(MeCN)2(Naft)4](BF4)4 indicate that the complex is reduced in situ to a dirhodium(I) species which maintains the dimeric, lantern-shaped structure.

Highly selective silylformylation of internal and functionalised alkynes with a cationic dirhodium(II) complex catalyst

ARONICA, LAURA ANTONELLA;
2010-01-01

Abstract

The tetracationic complex [Rh2(MeCN)2(Naft)4](BF4)4 (Naft = μ-1,8-naphthyridine) was found to be an efficient catalyst for the silylformylation of internal and functionalised alkynes to yield useful synthetic intermediates. The complex exhibits an unprecedented chemoselectivity towards alkyne silylformylation instead of simple hydrosilylation, as well as a good stereoselectivity. The catalytic efficiency of the complex is markedly superior compared to that of previously reported catalysts such as [View the MathML sourceRh+C7H8BPh4-] or Rh4(CO)12; incidentally, the performance of the latter catalyst was found to vary dramatically with its shelf-life, which indicates that the catalyst evolves with ageing towards other species, most notably higher nuclearity rhodium carbonyl clusters, which are more chemoselective towards silylformylation. Preliminary results on the determination of the catalytically active species in the case of complex [Rh2(MeCN)2(Naft)4](BF4)4 indicate that the complex is reduced in situ to a dirhodium(I) species which maintains the dimeric, lantern-shaped structure.
2010
Biffis, A; Conte, L; Tubaro, C; Basato, M; Aronica, LAURA ANTONELLA; Cuzzola, A; Caporusso, ANNA MARIA
File in questo prodotto:
File Dimensione Formato  
JOM2010.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 337.33 kB
Formato Adobe PDF
337.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/203743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact