We study the topological susceptibility, chi, of the 2D O(3) sigma-model by defining a density of topological charge as a local polynomial of the spin variables on the lattice. Following the field theoretical prescriptions we perform the additive and multiplicative renormalizations needed to extract-chi from Monte Carlo data. By numerical simulations we show that the field theoretical definition and the cooling method give a consistent determination of chi.

THE TOPOLOGICAL SUSCEPTIBILITY OF THE 2D O(3)SIGMA MODEL

DI GIACOMO, ADRIANO;VICARI, ETTORE
1992

Abstract

We study the topological susceptibility, chi, of the 2D O(3) sigma-model by defining a density of topological charge as a local polynomial of the spin variables on the lattice. Following the field theoretical prescriptions we perform the additive and multiplicative renormalizations needed to extract-chi from Monte Carlo data. By numerical simulations we show that the field theoretical definition and the cooling method give a consistent determination of chi.
DI GIACOMO, Adriano; F., Farchioni; A., Papa; Vicari, Ettore
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/204022
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 15
social impact