A series of 1-aryl-3,5-dimethyl-4,5-dihydro-1H-pyrazolo[4,5-c]quinolin-4-ones (2a-e) and 1-aryl-3-methyl-1H-pyrazolo[4,5-c]quinolines (3-7a-e) bearing different substituents at position 4 were prepared and tested for their ability to displace specific [3H]flunitrazepam binding from bovine brain membranes. The 5-N-methyl derivatives 2a-c,e were the compounds that bound with the highest affinity within this class. The replacement of the carbonyl group with other substituents and the resulting aromatization of the pyridine moiety greatly decreased the binding affinity. From a Lineweaver-Burk analysis on the most active compound 2b, it appears that the inhibition is a competitive one.
Pyrazolo[4,5-c]quinolines. 2. Synthesis and specific inhibition of benzodiazepine receptor binding.
MARTINI, CLAUDIA;LUCACCHINI, ANTONIO
1986-01-01
Abstract
A series of 1-aryl-3,5-dimethyl-4,5-dihydro-1H-pyrazolo[4,5-c]quinolin-4-ones (2a-e) and 1-aryl-3-methyl-1H-pyrazolo[4,5-c]quinolines (3-7a-e) bearing different substituents at position 4 were prepared and tested for their ability to displace specific [3H]flunitrazepam binding from bovine brain membranes. The 5-N-methyl derivatives 2a-c,e were the compounds that bound with the highest affinity within this class. The replacement of the carbonyl group with other substituents and the resulting aromatization of the pyridine moiety greatly decreased the binding affinity. From a Lineweaver-Burk analysis on the most active compound 2b, it appears that the inhibition is a competitive one.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.