The acute and chronic cardiotoxicity and cytotoxicity of the novel doxorubicin (DXR) derivative 4'-amino-3'-hydroxy-DXR were compared with those of 4'-deoxy-DXR and DXR. In the acute cardiotoxicity study, the ECG and hemodynamic changes recorded in anesthetized rats that had been treated i.v. with 10 mg/kg 4'-amino-3'-hydroxy-DXR or 8.6 mg/kg 4'-deoxy-DXR were significantly less severe than those caused by 13 mg/kg DXR. In the chronic cardiotoxicity study, rats received 3 weekly i.v. injections of 3 mg/kg DXR, 3 mg/kg 4'-amino-3'-hydroxy-DXR, or 2 mg/kg 4'-deoxy-DXR during the first 14 days of the study and were observed for an additional 35-day period. DXR induced severe cardiomyopathy that was characterized by ECG changes in vivo (S-alpha-T-segment widening and T-wave flattening) and by impairment of the contractile responses (F(max), +/- dF/dt(max)) to adrenaline of hearts isolated from treated animals. 4'-Deoxy-DXR caused a progressive enlargement of the S-alpha-T segment in vivo and a significant impairment of the - dF/dt(max) value in vitro, which were less severe than those produced by DXR. The least cardiotoxic drug was 4'-amino-3'-hydroxy-DXR, which induced minor ECG changes without causing significant alterations in the contractile responses of isolated hearts to adrenaline. On the basis of the drug concentration required to inhibit 50% of the colony formation (IC50) of cell lines in vitro, 4'-amino-3'-hydroxy-DXR was less active than 4'-deoxy-DXR but at least twice as active as DXR against human cancer and murine transformed cell lines. These data indicate that 4'-amino-3'-hydroxy-DXR is significantly less cardiotoxic and more cytotoxic than DXR.

REDUCED CARDIOTOXICITY AND INCREASED CYTOTOXICITY IN A NOVEL ANTHRACYCLINE ANALOG, 4'-AMINO-3'-HYDROXY-DOXORUBICIN

DANESI, ROMANO;BERNARDINI, NUNZIA;
1992

Abstract

The acute and chronic cardiotoxicity and cytotoxicity of the novel doxorubicin (DXR) derivative 4'-amino-3'-hydroxy-DXR were compared with those of 4'-deoxy-DXR and DXR. In the acute cardiotoxicity study, the ECG and hemodynamic changes recorded in anesthetized rats that had been treated i.v. with 10 mg/kg 4'-amino-3'-hydroxy-DXR or 8.6 mg/kg 4'-deoxy-DXR were significantly less severe than those caused by 13 mg/kg DXR. In the chronic cardiotoxicity study, rats received 3 weekly i.v. injections of 3 mg/kg DXR, 3 mg/kg 4'-amino-3'-hydroxy-DXR, or 2 mg/kg 4'-deoxy-DXR during the first 14 days of the study and were observed for an additional 35-day period. DXR induced severe cardiomyopathy that was characterized by ECG changes in vivo (S-alpha-T-segment widening and T-wave flattening) and by impairment of the contractile responses (F(max), +/- dF/dt(max)) to adrenaline of hearts isolated from treated animals. 4'-Deoxy-DXR caused a progressive enlargement of the S-alpha-T segment in vivo and a significant impairment of the - dF/dt(max) value in vitro, which were less severe than those produced by DXR. The least cardiotoxic drug was 4'-amino-3'-hydroxy-DXR, which induced minor ECG changes without causing significant alterations in the contractile responses of isolated hearts to adrenaline. On the basis of the drug concentration required to inhibit 50% of the colony formation (IC50) of cell lines in vitro, 4'-amino-3'-hydroxy-DXR was less active than 4'-deoxy-DXR but at least twice as active as DXR against human cancer and murine transformed cell lines. These data indicate that 4'-amino-3'-hydroxy-DXR is significantly less cardiotoxic and more cytotoxic than DXR.
Danesi, Romano; Bernardini, Nunzia; Agen, C; Costa, M; Zaccaro, L; Pieracci, D; Malvaldi, G; DEL TACCA, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/204210
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact