A structural investigation on some 4-amido-2-phenyl-1,2-dihydro-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives, designed as human A3 adenosine receptor (hA3 AR) antagonists, is described. In the new derivatives, some acyl residues with different steric bulk were introduced on the 4-amino group, and their combination with the 4-methoxy group on the 2-phenyl moiety, and/or the 6-nitro/6-amino substituent on the fused benzo ring, was also evaluated. Most of the new derivatives were potent and selective hA3 AR antagonists. SAR analysis showed that hindering and lipophilic acyl moieties not only are well tolerated but even ameliorate the hA3 affinity. Interestingly, the 4-methoxy substituent on the appended 2-phenyl moiety, as well as the 6-amino group, always exerted a positive effect, shifting the affinity toward the hA3 receptor subtype. In contrast, the 6-nitro substituent exerted a variable effect. An intensive molecular modeling investigation was performed to rationalize the experimental SAR findings.

4-amido-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-ones as new potent and selective human A3 adenosine receptor antagonists. synthesis, pharmacological evaluation, and ligand-receptor modeling studies

MARTINI, CLAUDIA;TRINCAVELLI, MARIA LETIZIA;
2006

Abstract

A structural investigation on some 4-amido-2-phenyl-1,2-dihydro-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives, designed as human A3 adenosine receptor (hA3 AR) antagonists, is described. In the new derivatives, some acyl residues with different steric bulk were introduced on the 4-amino group, and their combination with the 4-methoxy group on the 2-phenyl moiety, and/or the 6-nitro/6-amino substituent on the fused benzo ring, was also evaluated. Most of the new derivatives were potent and selective hA3 AR antagonists. SAR analysis showed that hindering and lipophilic acyl moieties not only are well tolerated but even ameliorate the hA3 affinity. Interestingly, the 4-methoxy substituent on the appended 2-phenyl moiety, as well as the 6-amino group, always exerted a positive effect, shifting the affinity toward the hA3 receptor subtype. In contrast, the 6-nitro substituent exerted a variable effect. An intensive molecular modeling investigation was performed to rationalize the experimental SAR findings.
Lenzi, O.; Colotta, V.; Catarzi, D.; Varano, F.; Filacchioni, G.; Martini, Claudia; Trincavelli, MARIA LETIZIA; Ciampi, O.; Varani, K.; Marighetti, F.; Morizzo, E.; Moro, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/205174
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 53
social impact