The paper describes a new class of human (h) A(3) adenosine receptor antagonists, the 2-arylpyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one derivatives (PTP), either 4-oxo (1-6, series A) or 4-amino-substituted (7-20, series B). In both series A and B, substituents able to act as hydrogen bond acceptors (OMe, OH, F, COOEt) were inserted on the 2-phenyl ring. In series B, cycloalkyl and acyl residues were introduced on the 4-amino group. Some of the new derivatives showed high hA(3) AR affinities (K(i) < 50 nM) and selectivities vs both hA(1) and hA(2A) receptors. The selected 4-benzoylamino-2-(4-methoxyphenyl)pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-on e (18), tested in an in vitro rat model of cerebral ischemia, proved to be effective in preventing the failure of synaptic activity induced by oxygen and glucose deprivation in the hippocampus. Molecular docking of this new class of hA(3) AR antagonists was carried out to depict their hypothetical binding mode to our refined model of hA(3) receptor.

Pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one as a new scaffold to develop potent and selective human A3 adenosine receptor antagonists. Synthesis, pharmacological evaluation, and ligand-receptor modeling studies

MARTINI, CLAUDIA;TRINCAVELLI, MARIA LETIZIA;
2009

Abstract

The paper describes a new class of human (h) A(3) adenosine receptor antagonists, the 2-arylpyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one derivatives (PTP), either 4-oxo (1-6, series A) or 4-amino-substituted (7-20, series B). In both series A and B, substituents able to act as hydrogen bond acceptors (OMe, OH, F, COOEt) were inserted on the 2-phenyl ring. In series B, cycloalkyl and acyl residues were introduced on the 4-amino group. Some of the new derivatives showed high hA(3) AR affinities (K(i) < 50 nM) and selectivities vs both hA(1) and hA(2A) receptors. The selected 4-benzoylamino-2-(4-methoxyphenyl)pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-on e (18), tested in an in vitro rat model of cerebral ischemia, proved to be effective in preventing the failure of synaptic activity induced by oxygen and glucose deprivation in the hippocampus. Molecular docking of this new class of hA(3) AR antagonists was carried out to depict their hypothetical binding mode to our refined model of hA(3) receptor.
Colotta, V; Lenzi, O; Catarzi, D; Varano, F; Filacchioni, G; Martini, Claudia; Trincavelli, MARIA LETIZIA; Ciampi, O; Pugliese, Am; Traini, C; Pedata, F; Morizzo, E; Moro, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/205512
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 35
social impact