An amino acid analysis by reversed-phase high-performance liquid chromatography after precolumn derivatization with phenyl isothiocyanate was adapted to the determination of free amino acids in plasma or other biological fluids and in tissue homogenates. Preparation of samples included deproteinization by 3% sulphosalicylic acid, and careful removal under high vacuum of residual phenyl isothiocyanate after derivatization. A Waters Pico-Tag column (15 cm long) was used, immersed in a water-bath at 38-degrees-C. In rat or human plasma, separation of 23 individual amino acids, plus the unresolved pair tryptophan and ornithine, was obtained within 13 min. Including the time for column washing and re-equilibration, samples could be chromatographed at 23-min intervals. Variability was tested for each amino acid by calculating the coefficients of variation of retention times (less than 1% in the average) and peak areas (less than 4% for both intra-day and inter-day determinations). The linearity for each standard amino acid was remarkable over the concentration range 3-50 nmol/ml. The mean recovery of amino acid standards added to plasma prior to derivatization was 97 +/- 0.8%, except for aspartate (82%) and glutamate (81%). This method is rapid (almost three samples per hour can be analysed, more than in any other reported technique), with satisfactory precision, sensitivity and reproducibility. Therefore, it is well suited for routine analysis of free amino acids in both clinical and research work.
Application of amino acid analysis by high-performance liquid chromatography with phenyl isothiocyanate derivatization to the rapid determination of free amino acids in biological samples
FIERABRACCI, VANNA;MASIELLO, PELLEGRINO;NOVELLI, MICHELA;BERGAMINI, ETTORE
1991-01-01
Abstract
An amino acid analysis by reversed-phase high-performance liquid chromatography after precolumn derivatization with phenyl isothiocyanate was adapted to the determination of free amino acids in plasma or other biological fluids and in tissue homogenates. Preparation of samples included deproteinization by 3% sulphosalicylic acid, and careful removal under high vacuum of residual phenyl isothiocyanate after derivatization. A Waters Pico-Tag column (15 cm long) was used, immersed in a water-bath at 38-degrees-C. In rat or human plasma, separation of 23 individual amino acids, plus the unresolved pair tryptophan and ornithine, was obtained within 13 min. Including the time for column washing and re-equilibration, samples could be chromatographed at 23-min intervals. Variability was tested for each amino acid by calculating the coefficients of variation of retention times (less than 1% in the average) and peak areas (less than 4% for both intra-day and inter-day determinations). The linearity for each standard amino acid was remarkable over the concentration range 3-50 nmol/ml. The mean recovery of amino acid standards added to plasma prior to derivatization was 97 +/- 0.8%, except for aspartate (82%) and glutamate (81%). This method is rapid (almost three samples per hour can be analysed, more than in any other reported technique), with satisfactory precision, sensitivity and reproducibility. Therefore, it is well suited for routine analysis of free amino acids in both clinical and research work.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.