We consider a notion of “numerosity” for sets of tuples of natural numbers, that satisfies the five common notions of Euclid’s Elements, so it can agree with cardinality only for finite sets. By suitably axiomatizing such a no- tion, we show that, contrasting to cardinal arithmetic, the natural “Cantorian” definitions of order relation and arithmetical operations provide a very good algebraic structure. In fact, numerosities can be taken as the non-negative part of a discretely ordered ring, namely the quotient of a formal power series ring modulo a suitable (“gauge”) ideal. In particular, special numerosities, called “natural”, can be identified with the semiring of hypernatural numbers of appropriate ultrapowers of N.

Natural numerosities of sets of tuples

FORTI, MARCO;
In corso di stampa

Abstract

We consider a notion of “numerosity” for sets of tuples of natural numbers, that satisfies the five common notions of Euclid’s Elements, so it can agree with cardinality only for finite sets. By suitably axiomatizing such a no- tion, we show that, contrasting to cardinal arithmetic, the natural “Cantorian” definitions of order relation and arithmetical operations provide a very good algebraic structure. In fact, numerosities can be taken as the non-negative part of a discretely ordered ring, namely the quotient of a formal power series ring modulo a suitable (“gauge”) ideal. In particular, special numerosities, called “natural”, can be identified with the semiring of hypernatural numbers of appropriate ultrapowers of N.
In corso di stampa
Forti, Marco; Morana Roccasalvo, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/208476
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact