The purpose of this article is to describe the integral cohomology of the braid group B3 and SL2 (Z) with local coefficients in a classical geometric representation given by symmetric powers of the natural symplectic representation. These groups have a description in terms of the so-called ‘divided polynomial algebra’. The results show a strong relation between the torsion part of the computed cohomology and fibrations related to loop spaces of spheres.
Autori interni: | |
Autori: | Callegaro, FILIPPO GIANLUCA; Cohen, F.; Salvetti, Mario |
Titolo: | THE COHOMOLOGY OF THE BRAID GROUP B3 AND OF SL2(Z) WITH COEFFICIENTS IN A GEOMETRIC REPRESENTATION |
Anno del prodotto: | 2013 |
Digital Object Identifier (DOI): | 10.1093/qmath/hat027 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2013quarterly.pdf | articolo | Documento in Post-print | Tutti i diritti riservati (All rights reserved) | Open AccessVisualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.