In this paper we study the structure of almost normal matrices, that is the matrices for which there exists a rank-one matrix C such that AHA − AAH = CA − AC. Necessary and sufficient conditions for a matrix to belong to the class are given and a canonical representation as a block tridiagonal matrix is shown. The approach is constructive and in the paper it is explained how, starting from a 1 × 1 or 2 × 2 matrix we can generate almost normal matrices. Moreover, given an n × n almost normal matrix we can compute the block tridiagonal representation with a finite procedure.
Autori interni: | DEL CORSO, GIANNA MARIA (Corresponding) |
Autori: | BEVILACQUA, ROBERTO; DEL CORSO, GIANNA MARIA |
Titolo: | A Condensed Representation of Almost Normal Matrices |
Anno del prodotto: | 2013 |
Digital Object Identifier (DOI): | 10.1016/j.laa.2013.02.004 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Almost_normal_REV.pdf | Documento in Post-print | ![]() | Open AccessVisualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.