The proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMGs) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer-scaled crystals in native silkworm fibers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zeta potential results demonstrated that α-chymotrypsin utilized only the non-amorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs. The SMGs were characterized in terms of size, charge, structure, morphology, crystallinity, swelling kinetics, water content and thermal properties. The results suggest that the present technique of preparing SMGs by α-chymotrypsin is simple and efficient, and that the prepared SMGs have useful features for studies related to biomaterial and pharmaceutical needs. This process is also an easy way to obtain the amorphous peptide chains for further study.

Silk microgels formed by proteolytic enzyme activity

CHIELLINI, FEDERICA;CHIELLINI, EMO
2013-01-01

Abstract

The proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMGs) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer-scaled crystals in native silkworm fibers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zeta potential results demonstrated that α-chymotrypsin utilized only the non-amorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs. The SMGs were characterized in terms of size, charge, structure, morphology, crystallinity, swelling kinetics, water content and thermal properties. The results suggest that the present technique of preparing SMGs by α-chymotrypsin is simple and efficient, and that the prepared SMGs have useful features for studies related to biomaterial and pharmaceutical needs. This process is also an easy way to obtain the amorphous peptide chains for further study.
2013
Samal, Sk; Dash, M; Chiellini, Federica; Kaplan, D; Chiellini, Emo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/214339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact