Let C be a 2-connected projective curve either reduced with planar singularities or contained in a smooth algebraic surface and let S be a subcanonical cluster (that is, a zero-dimensional scheme such that the space H0(C, ℐS KC) contains a generically invertible section). Under some general assumptions on S or C, we show that h0(C, ℐS KC)≤pa(C)−½ deg (S) and if equality holds then either S is trivial or C is honestly hyperelliptic or 3-disconnected. As a corollary, we give a generalization of Clifford's theorem for reduced curves with planar singularities.
Autori interni: | |
Autori: | Franciosi, Marco; E., Tenni |
Titolo: | On Clifford's theorem for singular curves |
Anno del prodotto: | 2014 |
Digital Object Identifier (DOI): | 10.1112/plms/pdt019 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
clifford.pdf | Documento in Post-print | NON PUBBLICO - Accesso privato/ristretto | Administrator Richiedi una copia | |
clifford-last.pdf | Documento in Post-print | Tutti i diritti riservati (All rights reserved) | Open AccessVisualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.