Different bacterial strains able to attack polyoxyethylene-type nonionic surfactants were isolated by enrichment procedure from the surface waters of the Arno River. Alkylphenol polyethoxylates and alkyl polyethoxylates, as well as polyethylene glycols, were degraded and assimilated by bacterial strains in axenic cultures. Degradative routes of polyethyleneoxide chains were investigated by matching each bacterial isolate with several types of nonionic surfactants and polyethers and by the identification of their degradation products isolated during aerobic digestion experiments. In accordance with previous reports, the first attack led to the shortening of the poly(oxyethylene) chains of the nonionic surfactants. It was found that the strains able to degrade PEG segments of nonionic surfactants possess enzymatic systems unable to degrade free PEGs, whereas those degrading the latter substrates cannot degrade PEG segments coupled to hydrophobic moieties.

Degradation of poly(ethylene glycol) based nonionic surfactants by different bacterial isolates from river water

CORTI, ANDREA;D'ANTONE, SALVATORE;SOLARO, ROBERTO;CHIELLINI, EMO
1998-01-01

Abstract

Different bacterial strains able to attack polyoxyethylene-type nonionic surfactants were isolated by enrichment procedure from the surface waters of the Arno River. Alkylphenol polyethoxylates and alkyl polyethoxylates, as well as polyethylene glycols, were degraded and assimilated by bacterial strains in axenic cultures. Degradative routes of polyethyleneoxide chains were investigated by matching each bacterial isolate with several types of nonionic surfactants and polyethers and by the identification of their degradation products isolated during aerobic digestion experiments. In accordance with previous reports, the first attack led to the shortening of the poly(oxyethylene) chains of the nonionic surfactants. It was found that the strains able to degrade PEG segments of nonionic surfactants possess enzymatic systems unable to degrade free PEGs, whereas those degrading the latter substrates cannot degrade PEG segments coupled to hydrophobic moieties.
1998
Corti, Andrea; D'Antone, Salvatore; Solaro, Roberto; Chiellini, Emo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/219527
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact