Different bacterial strains able to attack polyoxyethylene-type nonionic surfactants were isolated by enrichment procedure from the surface waters of the Arno River. Alkylphenol polyethoxylates and alkyl polyethoxylates, as well as polyethylene glycols, were degraded and assimilated by bacterial strains in axenic cultures. Degradative routes of polyethyleneoxide chains were investigated by matching each bacterial isolate with several types of nonionic surfactants and polyethers and by the identification of their degradation products isolated during aerobic digestion experiments. In accordance with previous reports, the first attack led to the shortening of the poly(oxyethylene) chains of the nonionic surfactants. It was found that the strains able to degrade PEG segments of nonionic surfactants possess enzymatic systems unable to degrade free PEGs, whereas those degrading the latter substrates cannot degrade PEG segments coupled to hydrophobic moieties.
Degradation of poly(ethylene glycol) based nonionic surfactants by different bacterial isolates from river water
CORTI, ANDREA;D'ANTONE, SALVATORE;SOLARO, ROBERTO;CHIELLINI, EMO
1998-01-01
Abstract
Different bacterial strains able to attack polyoxyethylene-type nonionic surfactants were isolated by enrichment procedure from the surface waters of the Arno River. Alkylphenol polyethoxylates and alkyl polyethoxylates, as well as polyethylene glycols, were degraded and assimilated by bacterial strains in axenic cultures. Degradative routes of polyethyleneoxide chains were investigated by matching each bacterial isolate with several types of nonionic surfactants and polyethers and by the identification of their degradation products isolated during aerobic digestion experiments. In accordance with previous reports, the first attack led to the shortening of the poly(oxyethylene) chains of the nonionic surfactants. It was found that the strains able to degrade PEG segments of nonionic surfactants possess enzymatic systems unable to degrade free PEGs, whereas those degrading the latter substrates cannot degrade PEG segments coupled to hydrophobic moieties.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.