A thermodynamical approach to the problem of star formation, presented in a previous paper, shows how the characteristics of the outcomes depend on the initial conditions and on the distribution of the angular momentum among the various parts of the system. In the case of a binary outcome, the distribution can be profitably expressed in terms of two parameters, roughly corresponding to (1) the spin ratio as function of the mass ratio and (2) the fraction of angular momentum involved in the orbital motion.
The role of angular momentum transfer to determine the mass ratio of binaries
PAOLICCHI, PAOLO;FERRINI, FEDERICO;
1987-01-01
Abstract
A thermodynamical approach to the problem of star formation, presented in a previous paper, shows how the characteristics of the outcomes depend on the initial conditions and on the distribution of the angular momentum among the various parts of the system. In the case of a binary outcome, the distribution can be profitably expressed in terms of two parameters, roughly corresponding to (1) the spin ratio as function of the mass ratio and (2) the fraction of angular momentum involved in the orbital motion.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.