Abstract— Wire delays and leakage energy consumption are both growing problems in designing large on-chip caches. Nonuniform cache architecture (NUCA) is a wire-delay aware design paradigm based on the sub-banking of a cache, which allows the banks closer to the controller to be accessed with reduced latencies with respect to the other banks. This feature is leveraged by dynamic NUCA (D-NUCA) caches via a migration mechanism which speeds up frequently used data access, further reducing the effect wire delays have on performance. To reduce leakage power consumption of static random access memory caches, various micro-architectural techniques have been proposed. In this brief, we compare the benefits and limits of the application of some of these techniques to a D-NUCA cache memory, and propose a novel hybrid scheme based on the Drowsy and Way Adaptable techniques. Such a scheme allows further improvement in leakage reduction and limits the impact of process variation on the effectiveness of the Drowsy technique.

Evaluation of Leakage Reduction Alternatives for Deep Submicron Dynamic Nonuniform Cache Architecture Caches

FOGLIA, PIERFRANCESCO;PRETE, COSIMO ANTONIO
2014

Abstract

Abstract— Wire delays and leakage energy consumption are both growing problems in designing large on-chip caches. Nonuniform cache architecture (NUCA) is a wire-delay aware design paradigm based on the sub-banking of a cache, which allows the banks closer to the controller to be accessed with reduced latencies with respect to the other banks. This feature is leveraged by dynamic NUCA (D-NUCA) caches via a migration mechanism which speeds up frequently used data access, further reducing the effect wire delays have on performance. To reduce leakage power consumption of static random access memory caches, various micro-architectural techniques have been proposed. In this brief, we compare the benefits and limits of the application of some of these techniques to a D-NUCA cache memory, and propose a novel hybrid scheme based on the Drowsy and Way Adaptable techniques. Such a scheme allows further improvement in leakage reduction and limits the impact of process variation on the effectiveness of the Drowsy technique.
Alessandro, Bardine; Manuel, Comparetti; Foglia, Pierfrancesco; Prete, COSIMO ANTONIO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/231530
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 12
social impact