We have measured the frequencies of four CH3OH far-infrared laser lines that were previously known only by wavelength measurement. Two of these lines turned out to be doublets, bringing the total number of measured lines to six. We can now confirm the assignments of five of them and definitely disprove the assignments proposed for the sixth. In particular we confirm the assignments for the four strong laser lines at 205 and 208 mum pumped by the 9-P(34) CO2 laser line. These lines share a common upper level in the first excited CO-stretch state, and terminate in the upper and lower levels of a hybrid state with J=5. Heterodyne frequency measurements and conventional microwave spectroscopy show that both lines are split into two components approximately 3.5 MHz apart. The origin of this further splitting is interpreted as a perturbed K-splitting.
ASSIGNMENTS OF METHANOL LASER LINES BY FREQUENCY MEASUREMENTS AND FOURIER-TRANSFORM SPECTROSCOPY
CARELLI, GIORGIO;MORUZZI, GIOVANNI;STRUMIA, FRANCO
1994-01-01
Abstract
We have measured the frequencies of four CH3OH far-infrared laser lines that were previously known only by wavelength measurement. Two of these lines turned out to be doublets, bringing the total number of measured lines to six. We can now confirm the assignments of five of them and definitely disprove the assignments proposed for the sixth. In particular we confirm the assignments for the four strong laser lines at 205 and 208 mum pumped by the 9-P(34) CO2 laser line. These lines share a common upper level in the first excited CO-stretch state, and terminate in the upper and lower levels of a hybrid state with J=5. Heterodyne frequency measurements and conventional microwave spectroscopy show that both lines are split into two components approximately 3.5 MHz apart. The origin of this further splitting is interpreted as a perturbed K-splitting.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.