Histone lysine demethylases (KDMs) have been recently discovered in mammals and have been nicknamed "erasers" for their ability to remove methyl groups from histone substrates. In cancer cells, KDMs can activate or repress gene transcription, behaving as oncogenes or tumor suppressors depending upon the cellular context. In order to investigate the potential role of KDMs in Breast Cancer (BC), we queried the Oncomine database and determined that the expression of KDMs correlates with BC prognosis. High expression of KDM3B and KDM5A is associated with a better prognosis (no recurrence after mastectomy p=0.005 and response to docetaxel p=0.005); conversely, KDM6A is overexpressed in BC patients with an unfavorable prognosis (mortality at 1 year, p=8.65E-7). Our findings suggest that KDMs could be potential targets for BC therapy. Further, altering the interactions between KDMs and Polycomb Group genes (PcG) may provide novel avenues for therapy that specifically targets these genes in BC.

Histone lysine demethylases in breast cancer.

PAOLICCHI, ELISA;DANESI, ROMANO
Writing – Review & Editing
2013

Abstract

Histone lysine demethylases (KDMs) have been recently discovered in mammals and have been nicknamed "erasers" for their ability to remove methyl groups from histone substrates. In cancer cells, KDMs can activate or repress gene transcription, behaving as oncogenes or tumor suppressors depending upon the cellular context. In order to investigate the potential role of KDMs in Breast Cancer (BC), we queried the Oncomine database and determined that the expression of KDMs correlates with BC prognosis. High expression of KDM3B and KDM5A is associated with a better prognosis (no recurrence after mastectomy p=0.005 and response to docetaxel p=0.005); conversely, KDM6A is overexpressed in BC patients with an unfavorable prognosis (mortality at 1 year, p=8.65E-7). Our findings suggest that KDMs could be potential targets for BC therapy. Further, altering the interactions between KDMs and Polycomb Group genes (PcG) may provide novel avenues for therapy that specifically targets these genes in BC.
Paolicchi, Elisa; F., Crea; W. L., Farrar; J. E., Green; Danesi, Romano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/232942
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 39
social impact