Abstract: The interaction between lipid vesicles and NGF(1-14) peptide, mimicking nerve growth factor, was addressed to fabricate peptide-associated supported lipid bilayers (SLBs). According to a model of predominant electrostatic interactions, zwitterionic and anionic lipid vesicles were used to optimize the peptide association with the lipid membranes. Both planar silica and core-shell nanoparticles (NPs) were used as polar hydrophilic substrates to form the SLBs functionalized with the NGF peptide. The hybrid biointerface was scrutinized by a multitechnique approach with QCM-D, FRAP and fluorescence spectroscopy in terms of self-assembling kinetics, lipid lateral diffusion, and energy transfer processes in the SLB-wrapped silica NPs dye-doped in the core. The response of neuronal cells to the NGF(1-14)-SLBs highlighted their promising application as a drug delivery nanoplatform for ageing-related diseases.
Autori interni: | |
Autori: | Travaglia A; Satriano C; Giuffrida ML; La Mendola D; Rampazzo E; Prodi L; Rizzarelli E |
Titolo: | Electrostatically driven interaction of silica-supported lipid bilayer nanoplatforms and a nerve growth factor-mimicking peptide |
Anno del prodotto: | 2013 |
Digital Object Identifier (DOI): | 10.1039/c3sm50628b |
Appare nelle tipologie: | 1.1 Articolo in rivista |