We report on a theoretical study of the electronic transport properties of binuclear complexes of metals of the VIII group bridged by pyrazine. Metal-porphyrazine units have been combined in order to investigate symmetric and non-symmetric species with particular focus on their current rectification properties. Transmission functions and I-V characteristics of the various species have been computed using a Non-Equilibrium Green Function with a simplified treatment of the molecule-lead interaction. The results obtained show an overall moderate asymmetry in the current along the molecules, which is of the donors- acceptor type and follow the trend of the ionization potential of the metals in the binuclear system. The bias-dependent rectification ratio, which is significant in a limited voltage window, can be explained in terms of the alignment of the occupied orbitals of the metallic fragments that contribute to the HOMO and HOMO - 1 of the supermolecule. The possible improvement of the rectification performance of such a class of molecules has also been investigated exploiting suitable substitution by electron-withdrawing groups.

Transport properties of binuclear metal complexes of the VIII group using a simplified NEGF-DFT approach

CACELLI, IVO;
2013-01-01

Abstract

We report on a theoretical study of the electronic transport properties of binuclear complexes of metals of the VIII group bridged by pyrazine. Metal-porphyrazine units have been combined in order to investigate symmetric and non-symmetric species with particular focus on their current rectification properties. Transmission functions and I-V characteristics of the various species have been computed using a Non-Equilibrium Green Function with a simplified treatment of the molecule-lead interaction. The results obtained show an overall moderate asymmetry in the current along the molecules, which is of the donors- acceptor type and follow the trend of the ionization potential of the metals in the binuclear system. The bias-dependent rectification ratio, which is significant in a limited voltage window, can be explained in terms of the alignment of the occupied orbitals of the metallic fragments that contribute to the HOMO and HOMO - 1 of the supermolecule. The possible improvement of the rectification performance of such a class of molecules has also been investigated exploiting suitable substitution by electron-withdrawing groups.
2013
Vincenzo, Barone; Cacelli, Ivo; Alessandro, Ferretti; Michele, Visciarelli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/237994
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact