High-field high-frequency Electron Paramagnetic Resonance spectroscopy (HP-EPR) is a powerful tool to investigate, with ultra-high angular resolution, the rotational dynamics of complex systems like polymers, viscous fluids and glasses. Usually, information is drawn by detailed numerical analysis of the overall lineshape. Here, we present a simplified analytical model of the line shifts due to the rotational dynamics of the paramagnetic centre. The model captures the basic features of the reorientation process (time scale and size of the angular jump). It is compared with experimental results concerning the reorientation of a paramagnetic guest molecule dissolved in polystyrene. We find that, if the rotational model to describe the reorientation of the radical is consistent, the best-fit parameters yield equally acceptable best-fits of the overall spectrum by numerical simulations and dynamical line shifts by independent analytic expressions.

Dynamical Line-Shifts in High-Field Electron Spin Resonance: Applications to Polymer Physics

LEPORINI, DINO
2012-01-01

Abstract

High-field high-frequency Electron Paramagnetic Resonance spectroscopy (HP-EPR) is a powerful tool to investigate, with ultra-high angular resolution, the rotational dynamics of complex systems like polymers, viscous fluids and glasses. Usually, information is drawn by detailed numerical analysis of the overall lineshape. Here, we present a simplified analytical model of the line shifts due to the rotational dynamics of the paramagnetic centre. The model captures the basic features of the reorientation process (time scale and size of the angular jump). It is compared with experimental results concerning the reorientation of a paramagnetic guest molecule dissolved in polystyrene. We find that, if the rotational model to describe the reorientation of the radical is consistent, the best-fit parameters yield equally acceptable best-fits of the overall spectrum by numerical simulations and dynamical line shifts by independent analytic expressions.
2012
Bercu, V; Martinelli, M; Pardi, L.; Massa, Ca; Leporini, Dino
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/238041
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact