Currently, in the smartphone market, Android is the platform with the highest share. Due to this popularity and also to its open source nature, Android-based smartphones are now an ideal target for attackers. Since the number of malware designed for Android devices is increasing fast, Android users are looking for security solutions aimed at preventing malicious actions from damaging their smartphones. In this paper, we describe MADAM, a Multi-level Anomaly Detector for Android Malware. MADAM concurrently monitors Android at the kernel-level and user-level to detect real malware infections using machine learning techniques to distinguish between standard behaviors and malicious ones. The first prototype of MADAM is able to detect several real malware found in the wild. The device usability is not affected by MADAM due to the low number of false positives generated after the learning phase. © 2012 Springer-Verlag Berlin Heidelberg.

MADAM: A multi-level anomaly detector for android malware

DINI, GIANLUCA;SARACINO, ANDREA;SGANDURRA, DANIELE
2012-01-01

Abstract

Currently, in the smartphone market, Android is the platform with the highest share. Due to this popularity and also to its open source nature, Android-based smartphones are now an ideal target for attackers. Since the number of malware designed for Android devices is increasing fast, Android users are looking for security solutions aimed at preventing malicious actions from damaging their smartphones. In this paper, we describe MADAM, a Multi-level Anomaly Detector for Android Malware. MADAM concurrently monitors Android at the kernel-level and user-level to detect real malware infections using machine learning techniques to distinguish between standard behaviors and malicious ones. The first prototype of MADAM is able to detect several real malware found in the wild. The device usability is not affected by MADAM due to the low number of false positives generated after the learning phase. © 2012 Springer-Verlag Berlin Heidelberg.
2012
9783642337031
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/238413
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 174
  • ???jsp.display-item.citation.isi??? ND
social impact