The counter-current diffusion-driven mixing process of two miscible fluids is studied in the absence of gravity, assuming that the mixture is non regular, that is its volume is smaller than the sum of the initial volumes of the two components. Two competing effects are present in the mixing region: on one hand, the mass flow rate of each species increases, due to the larger density of the fluid; on the other hand, though, the volumetric flux is retarded by the inward convection due to volume disappearance, which opposes the outward velocity field due to diffusion. This intuition is confirmed by the analytical result of a 1D non-ideal mixing process, showing that, in the presence of the convection induced by a volume decrease, a) the process is self-similar; b) the mass flux of each species at the interface increases by approximately 0.8 e, where e is the maximum relative volume decrease; c) the volume flux of each species decreases by approximately a 0.2 e amount. This result is further confirmed by a perturbation analysis for small e.

Volume of Mixing Effect on Fluid Counter-Diffusion

ORSI, GIANNI;MAURI, ROBERTO
2013-01-01

Abstract

The counter-current diffusion-driven mixing process of two miscible fluids is studied in the absence of gravity, assuming that the mixture is non regular, that is its volume is smaller than the sum of the initial volumes of the two components. Two competing effects are present in the mixing region: on one hand, the mass flow rate of each species increases, due to the larger density of the fluid; on the other hand, though, the volumetric flux is retarded by the inward convection due to volume disappearance, which opposes the outward velocity field due to diffusion. This intuition is confirmed by the analytical result of a 1D non-ideal mixing process, showing that, in the presence of the convection induced by a volume decrease, a) the process is self-similar; b) the mass flux of each species at the interface increases by approximately 0.8 e, where e is the maximum relative volume decrease; c) the volume flux of each species decreases by approximately a 0.2 e amount. This result is further confirmed by a perturbation analysis for small e.
2013
Orsi, Gianni; Mauri, Roberto
File in questo prodotto:
File Dimensione Formato  
PoF 2013.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 505.95 kB
Formato Adobe PDF
505.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/244735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact