We define a sum Z(M) over the geometries of three-manifolds M, which are closed, connected and orientable, by using the Chern-Simons interpretation of three-dimensional gravity. A possible method for the computation of Z(M) is described and illustrated by means of various examples. The behaviour of Z(M) in the semiclassical limit is considered.

Sum over the geometries of three-manifolds

GUADAGNINI, ENORE
1994

Abstract

We define a sum Z(M) over the geometries of three-manifolds M, which are closed, connected and orientable, by using the Chern-Simons interpretation of three-dimensional gravity. A possible method for the computation of Z(M) is described and illustrated by means of various examples. The behaviour of Z(M) in the semiclassical limit is considered.
Tomassini, P; Guadagnini, Enore
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/24716
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact