We study the properties of the gauge invariant observables of the three-dimensional Chern-Simons field theory; it is shown that the algebra structure determined by the observables is isomorphic with the fusion rules of two-dimensional conformal theories. In the colour state space of the link components, a projective representation of the modular group is defined. The relations satisfied by the S matrix of the conformal models admit an interpretation in terms of three-dimensional topology; we describe the topological origin of these relations.

Three-dimensional topology and Verlinde formulas

GUADAGNINI, ENORE;
1995

Abstract

We study the properties of the gauge invariant observables of the three-dimensional Chern-Simons field theory; it is shown that the algebra structure determined by the observables is isomorphic with the fusion rules of two-dimensional conformal theories. In the colour state space of the link components, a projective representation of the modular group is defined. The relations satisfied by the S matrix of the conformal models admit an interpretation in terms of three-dimensional topology; we describe the topological origin of these relations.
Guadagnini, Enore; Pilo, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/24720
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact