Parvalbumin (PV) is a calcium-binding protein localized to selected neurons in the nervous system, including the retina. This investigation evaluated the distribution of PV immunoreactivity in the rabbit retina using immunohistochemistry with a monoclonal antibody directed to carp PV. In the inner nuclear layer (INL), PV immunoreactivity was present in horizontal and amacrine cells. In the ganglion cell layer, PV immunostaining was confined to somata that are likely to be both displaced amacrine cells and ganglion cells. PV-immunoreactive (IR) amacrine cells were positioned in the proximal INL adjacent to the inner plexiform layer (IPL). These cells usually gave rise to a single primary process, which arborized into two distinct bands in the IPL. In sublamina a, the processes were thin and had large, irregular endings. In sublamina b, multiple processes branched from the primary process and were characterized by varicosities and spines. PV-IR amacrine cell bodies measured from 8 to 10 microns in diameter. Their density was highest in the visual streak and lowest in the periphery of the superior retina. The average number of PV-IR amacrine cells was 464,045 cells per retina (N = 3), and the average regularity index of the PV-IR cell mosaic was 3.23. PV-IR amacrine cells were further characterized by double-label immunofluorescence experiments using antibodies to PV and tyrosine hydroxylase (TH). Varicose TH-IR processes were in close apposition to many PV-IR amacrine cells and often formed "ring structures" around them. Together, these morphological, quantitative, and histochemical observations indicate that PV immunoreactivity in the INL is localized predominantly to AII amacrine cells, and therefore it is a valuable marker for the identification of this cell type

A II amacrine cell population in the rabbit retina: identification by parvalbumin immunoreactivity

CASINI, GIOVANNI;
1995-01-01

Abstract

Parvalbumin (PV) is a calcium-binding protein localized to selected neurons in the nervous system, including the retina. This investigation evaluated the distribution of PV immunoreactivity in the rabbit retina using immunohistochemistry with a monoclonal antibody directed to carp PV. In the inner nuclear layer (INL), PV immunoreactivity was present in horizontal and amacrine cells. In the ganglion cell layer, PV immunostaining was confined to somata that are likely to be both displaced amacrine cells and ganglion cells. PV-immunoreactive (IR) amacrine cells were positioned in the proximal INL adjacent to the inner plexiform layer (IPL). These cells usually gave rise to a single primary process, which arborized into two distinct bands in the IPL. In sublamina a, the processes were thin and had large, irregular endings. In sublamina b, multiple processes branched from the primary process and were characterized by varicosities and spines. PV-IR amacrine cell bodies measured from 8 to 10 microns in diameter. Their density was highest in the visual streak and lowest in the periphery of the superior retina. The average number of PV-IR amacrine cells was 464,045 cells per retina (N = 3), and the average regularity index of the PV-IR cell mosaic was 3.23. PV-IR amacrine cells were further characterized by double-label immunofluorescence experiments using antibodies to PV and tyrosine hydroxylase (TH). Varicose TH-IR processes were in close apposition to many PV-IR amacrine cells and often formed "ring structures" around them. Together, these morphological, quantitative, and histochemical observations indicate that PV immunoreactivity in the INL is localized predominantly to AII amacrine cells, and therefore it is a valuable marker for the identification of this cell type
1995
Casini, Giovanni; Rickman, Dw; Brecha, Nc
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/24973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 69
social impact