Riemann surfaces with nodes can be described by introducing simple composite operators in matrix models. In the case of the Kontsevich model, it is sufficient to add the quadratic, but 'non-propagating', term (tr[X])2 to the Lagrangian. The corresponding Jenkins-Strebel differentials have pairwise identified simple poles. The result is in agreement with a conjecture formulated by Kontsevich and recently investigated by Arbarello and Cornalba that the set M(m*,s) of ribbon graphs with s faces and m* = (m(0), m(1),...,m(j),...) vertices of valencies (1, 3,...,2j + 1,...) 'can be expressed in terms of Mumford-Morita classes': one gets an interpretation for univalent vertices. I also address the possible relationship with a recently formulated theory of constrained topological gravity.

NODES AS COMPOSITE-OPERATORS IN MATRIX MODELS

ANSELMI, DAMIANO
1995

Abstract

Riemann surfaces with nodes can be described by introducing simple composite operators in matrix models. In the case of the Kontsevich model, it is sufficient to add the quadratic, but 'non-propagating', term (tr[X])2 to the Lagrangian. The corresponding Jenkins-Strebel differentials have pairwise identified simple poles. The result is in agreement with a conjecture formulated by Kontsevich and recently investigated by Arbarello and Cornalba that the set M(m*,s) of ribbon graphs with s faces and m* = (m(0), m(1),...,m(j),...) vertices of valencies (1, 3,...,2j + 1,...) 'can be expressed in terms of Mumford-Morita classes': one gets an interpretation for univalent vertices. I also address the possible relationship with a recently formulated theory of constrained topological gravity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/25495
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact