The relative viscosity of a suspension of rigid, noncolloidal particles immersed in a Newtonian fluid was measured in a Couette device and was found to be shear thinning even for values of the solids fraction as low as 20%. Although such behavior was reported previously, no satisfactory explanation appears to have been given thus far. It shall be shown presently, however, that, at least for our systems, this shear-thinning effect was due to a slight mismatch in the densities of the two phases. Moreover, the apparent relative viscosities measured in our apparatus were found to be in excellent agreement with those predicted theoretically using a model, originally proposed by Leighton and Acrivos [Chem. Eng. Sci. 41, 1377–1384 (1986)], to describe viscous resuspension, according to which the measured relative viscosity should depend on the bulk particle concentration and on the dimensionless Shields number A, and should attain its correct value for a well-mixed suspension only as A. The predictions of this model are also in excellent agreement with the measured transient response of the apparent relative viscosity due to a sudden change in the shear rate.

On the Measurement of the Relative Viscosity of Suspensions

MAURI, ROBERTO
1994-01-01

Abstract

The relative viscosity of a suspension of rigid, noncolloidal particles immersed in a Newtonian fluid was measured in a Couette device and was found to be shear thinning even for values of the solids fraction as low as 20%. Although such behavior was reported previously, no satisfactory explanation appears to have been given thus far. It shall be shown presently, however, that, at least for our systems, this shear-thinning effect was due to a slight mismatch in the densities of the two phases. Moreover, the apparent relative viscosities measured in our apparatus were found to be in excellent agreement with those predicted theoretically using a model, originally proposed by Leighton and Acrivos [Chem. Eng. Sci. 41, 1377–1384 (1986)], to describe viscous resuspension, according to which the measured relative viscosity should depend on the bulk particle concentration and on the dimensionless Shields number A, and should attain its correct value for a well-mixed suspension only as A. The predictions of this model are also in excellent agreement with the measured transient response of the apparent relative viscosity due to a sudden change in the shear rate.
1994
Acrivos, A; Fan, X. C.; Mauri, Roberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/25608
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 36
social impact