Poly(ester-ether-ester) block copolymers, belonging to a class of biodegradable materials, were synthesized from poly(ethylene glycol) and epsilon-caprolactone by a simple ring-opening mechanism, which avoids the use of potentially toxic inorganic or organometallic initiators. The morphological and mechanical properties of such materials were investigated by gel-permeation chromatography, vapour pressure osmometry, proton magnetic resonance, infrared spectroscopy, differential scanning calorimetry, X-ray diffractometry and stress-strain tensile tests. The biocompatibility was investigated by cytotoxicity and hemocompatibility tests; the cytotoxicity was tested by the Neutral Red uptake assay, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, the Kenacid Blue R-binding method, and by the cell proliferation test on polymer films; the hemocompatibility was tested by the contact activation both of the coagulation cascade (intrinsic pathway), by the plasma prekallikrein activation test, and of the thrombocytes, by measuring the release of platelet factor 4 and beta-thromboglobulin. The experimental results show that such a polymerization process permits high-molecular mass block copolymers with relatively good tensile and mechanical properties to be obtained. Their cyto- and hemo-compatibility makes them suitable for employment as biomaterials.

Poly(ester-ether-ester) block copolymers as biomaterials

CASCONE, MARIA GRAZIA;
1994-01-01

Abstract

Poly(ester-ether-ester) block copolymers, belonging to a class of biodegradable materials, were synthesized from poly(ethylene glycol) and epsilon-caprolactone by a simple ring-opening mechanism, which avoids the use of potentially toxic inorganic or organometallic initiators. The morphological and mechanical properties of such materials were investigated by gel-permeation chromatography, vapour pressure osmometry, proton magnetic resonance, infrared spectroscopy, differential scanning calorimetry, X-ray diffractometry and stress-strain tensile tests. The biocompatibility was investigated by cytotoxicity and hemocompatibility tests; the cytotoxicity was tested by the Neutral Red uptake assay, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, the Kenacid Blue R-binding method, and by the cell proliferation test on polymer films; the hemocompatibility was tested by the contact activation both of the coagulation cascade (intrinsic pathway), by the plasma prekallikrein activation test, and of the thrombocytes, by measuring the release of platelet factor 4 and beta-thromboglobulin. The experimental results show that such a polymerization process permits high-molecular mass block copolymers with relatively good tensile and mechanical properties to be obtained. Their cyto- and hemo-compatibility makes them suitable for employment as biomaterials.
1994
Cerrai, P; Guerra, G. D.; Lelli, L; Tricoli, M; Sbarbati Del Guerra, R; Cascone, MARIA GRAZIA; Giusti, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/26259
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 77
social impact