The purpose of this study was to examine the cytotoxicity and cardiotoxicity of new doxorubicin (DXR) derivatives, 3'-deamino-3'-(2-methoxy-4- morpholinyl)DXR (MRA-MT), and 4'-deoxy-4'-iodo-doxorubicin (IDXR), comparing them to doxorubicin (DXR). Both anthracycline derivatives were approximately 1.5- to 9-fold more active than DXR in inhibiting the colony-formation ability of DU145, HOS, and A2780 human cancer cell lines. Anesthetized rats given a single intravenous (i.v.) dose of DXR 10 mg/kg showed significant changes in both ECG (S alpha T segment and QRS complex widening) and hemodynamic parameters (impairment in systemic arterial dP/dtmax systolic and diastolic blood pressure), whereas animals that received MRA-MT (0.1 and 0.3 mg/kg) had no significant signs of acute cardiotoxicity. In this case the animals treated with IDXR 1.2 mg/kg showed alterations in the ECG as the animals treated with DXR. In the chronic cardiotoxicity study, some animals received MRA-MT (0.03 mg/kg i.v. once a week for 3 weeks) and others IDXR (4 mg/kg once a week for 3 weeks). They did not show any alteration in ECG and cardiac histological picture. By contrast, DXR (3 mg/kg i.v. once a week for 3 weeks) induced a severe cardiomyopathy, characterized by progressive widening of S alpha T segment, increase in T wave, and histological damage consisting of vacuolations and loss of myofibrils. These results suggest that MRA-MT and IDXR are more active in vitro and markedly less cardiotoxic in vivo than DXR.

Dissociation between in vitro cytotoxicity and in vivo cardiotoxicity of two new anthracyclines: 3'-deamino-3'-(2-methoxy-4-morpholinyl)doxorubicin and 4'-deoxy-4'-iodo-doxorubicin

DI PAOLO, ANTONELLO;DANESI, ROMANO;
1994-01-01

Abstract

The purpose of this study was to examine the cytotoxicity and cardiotoxicity of new doxorubicin (DXR) derivatives, 3'-deamino-3'-(2-methoxy-4- morpholinyl)DXR (MRA-MT), and 4'-deoxy-4'-iodo-doxorubicin (IDXR), comparing them to doxorubicin (DXR). Both anthracycline derivatives were approximately 1.5- to 9-fold more active than DXR in inhibiting the colony-formation ability of DU145, HOS, and A2780 human cancer cell lines. Anesthetized rats given a single intravenous (i.v.) dose of DXR 10 mg/kg showed significant changes in both ECG (S alpha T segment and QRS complex widening) and hemodynamic parameters (impairment in systemic arterial dP/dtmax systolic and diastolic blood pressure), whereas animals that received MRA-MT (0.1 and 0.3 mg/kg) had no significant signs of acute cardiotoxicity. In this case the animals treated with IDXR 1.2 mg/kg showed alterations in the ECG as the animals treated with DXR. In the chronic cardiotoxicity study, some animals received MRA-MT (0.03 mg/kg i.v. once a week for 3 weeks) and others IDXR (4 mg/kg once a week for 3 weeks). They did not show any alteration in ECG and cardiac histological picture. By contrast, DXR (3 mg/kg i.v. once a week for 3 weeks) induced a severe cardiomyopathy, characterized by progressive widening of S alpha T segment, increase in T wave, and histological damage consisting of vacuolations and loss of myofibrils. These results suggest that MRA-MT and IDXR are more active in vitro and markedly less cardiotoxic in vivo than DXR.
1994
Pinna, A; Agen, C; DI PAOLO, Antonello; Innocenti, F; Nardini, D; Danesi, Romano; DEL TACCA, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/26509
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact