We give an example of an autonomous functional $F(u) = \int_\Omega f(u,Du) dx$ (where $\Omega$ is open subset of $R^2$ and $u:\Omega\to R^2$ belongs the Sobolev space $W^{1,1}$) which is sequentially weakly lower semicontinuous in $W^{1,p}$ for every $p \ge 1$ but does not agree with the relaxation of the same functional restricted to smooth functions when $p<2$. A Lavrentiev phenomenon occurs for a related boundary problem.

Gap phenomenon for autonomous functionals

ALBERTI, GIOVANNI;MAJER, PIETRO
1994

Abstract

We give an example of an autonomous functional $F(u) = \int_\Omega f(u,Du) dx$ (where $\Omega$ is open subset of $R^2$ and $u:\Omega\to R^2$ belongs the Sobolev space $W^{1,1}$) which is sequentially weakly lower semicontinuous in $W^{1,p}$ for every $p \ge 1$ but does not agree with the relaxation of the same functional restricted to smooth functions when $p<2$. A Lavrentiev phenomenon occurs for a related boundary problem.
Alberti, Giovanni; Majer, Pietro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/28646
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact