A Quantified Linear Implication (QLI) is an inclusion query over two polyhedral sets, with a quantifier string that specifies which variables are existentially quantified and which are universally quantified. Equivalently, it can be viewed as a quantified implication of two systems of linear inequalities. In this paper, we provide a 2-person game semantics for the QLI problem, which allows us to explore the computational complexities of several of its classes. More specifically, we prove that the decision problem for QLIs with an arbitrary number of quantifier alternations is PSPACE-hard. Furthermore, we explore the computational complexities of several classes of 0, 1, and 2-quantifier alternation QLIs. We observed that some classes are decidable in polynomial time, some are NP-complete, some are coNP-hard and some are P2-hard.We also establish the hardness of QLIs with 2 or more quantifier alternations with respect to the first quantifier in the quantifier string and the number of quantifier alternations. All the proofs that we provide for polynomially solvable problems are constructive, i.e., polynomial-time decision algorithms are devised that utilize well-known procedures. QLIs can be utilized as powerful modelling tools for real-life applications. Such applications include reactive systems, real-time schedulers, and static program analyzers.

On Quantified Linear Implications

RUGGIERI, SALVATORE;
2014

Abstract

A Quantified Linear Implication (QLI) is an inclusion query over two polyhedral sets, with a quantifier string that specifies which variables are existentially quantified and which are universally quantified. Equivalently, it can be viewed as a quantified implication of two systems of linear inequalities. In this paper, we provide a 2-person game semantics for the QLI problem, which allows us to explore the computational complexities of several of its classes. More specifically, we prove that the decision problem for QLIs with an arbitrary number of quantifier alternations is PSPACE-hard. Furthermore, we explore the computational complexities of several classes of 0, 1, and 2-quantifier alternation QLIs. We observed that some classes are decidable in polynomial time, some are NP-complete, some are coNP-hard and some are P2-hard.We also establish the hardness of QLIs with 2 or more quantifier alternations with respect to the first quantifier in the quantifier string and the number of quantifier alternations. All the proofs that we provide for polynomially solvable problems are constructive, i.e., polynomial-time decision algorithms are devised that utilize well-known procedures. QLIs can be utilized as powerful modelling tools for real-life applications. Such applications include reactive systems, real-time schedulers, and static program analyzers.
P., Eirinakis; Ruggieri, Salvatore; K., Subraman; P. J., Wojciechowski
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/291339
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact