In this paper, we explore the computational complexity of the conjunctive fragment of the first-order theory of linear arithmetic. Quantified propositional formulas of linear inequalities with $(k-1)$ quantifier alternations are log-space complete in $\Sigma_k^P$ or $\Pi_k^P$ depending on the initial quantifier. We show that when we restrict ourselves to quantified conjunctions of linear inequalities, i.e., quantified linear systems, the complexity classes collapse to polynomial time. In other words, the presence of universal quantifiers does not alter the complexity of the linear programming problem, which is known to be in P. Our result reinforces the importance of sentence formats from the perspective of computational complexity.

On the complexity of quantified linear systems

RUGGIERI, SALVATORE;
2014

Abstract

In this paper, we explore the computational complexity of the conjunctive fragment of the first-order theory of linear arithmetic. Quantified propositional formulas of linear inequalities with $(k-1)$ quantifier alternations are log-space complete in $\Sigma_k^P$ or $\Pi_k^P$ depending on the initial quantifier. We show that when we restrict ourselves to quantified conjunctions of linear inequalities, i.e., quantified linear systems, the complexity classes collapse to polynomial time. In other words, the presence of universal quantifiers does not alter the complexity of the linear programming problem, which is known to be in P. Our result reinforces the importance of sentence formats from the perspective of computational complexity.
Ruggieri, Salvatore; P., Eirinakis; K., Subramani; P. J., Wojciechowski
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/291343
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact