We present experiments that test the effects of agents commonly used in visual pigment investigations, namely hydroxylamine (NH 2OH), digitonin and triton X-100, on the photoreceptor and photoreception of Euglena. Hydroxylamine reacts with free and opsin-bound retinal, in aqueous solution, to form stable oximes, whereas digitonin and triton X-100 are the most common extractants of rhodopsin. Since previous data indicate that the chromophore present in Euglena photoreceptor is retinal, we investigated the influence of these chemicals on this organelle. The effects of these agents were studied by means of phase contrast, fluorescence and transmission electron microscopy and photobehaviour experiments. Hydroxylamine inhibited the formation of the Euglena photoreceptor. Photoaccumulation experiments on hydroxylamine-treated cells showed that they are unable to perceive light. Digitonin solubilized the crystalline structure of the photoreceptor, whereas the triton effect was limited to the membranous structures of the cell, leaving the photoreceptor unimpaired.

Effects of hydroxylamine, digitonin and triton X-100 on photoreceptor (paraflagellarswelling) and photoreception of Euglena gracilis.

LENZI, PAOLA;
1993-01-01

Abstract

We present experiments that test the effects of agents commonly used in visual pigment investigations, namely hydroxylamine (NH 2OH), digitonin and triton X-100, on the photoreceptor and photoreception of Euglena. Hydroxylamine reacts with free and opsin-bound retinal, in aqueous solution, to form stable oximes, whereas digitonin and triton X-100 are the most common extractants of rhodopsin. Since previous data indicate that the chromophore present in Euglena photoreceptor is retinal, we investigated the influence of these chemicals on this organelle. The effects of these agents were studied by means of phase contrast, fluorescence and transmission electron microscopy and photobehaviour experiments. Hydroxylamine inhibited the formation of the Euglena photoreceptor. Photoaccumulation experiments on hydroxylamine-treated cells showed that they are unable to perceive light. Digitonin solubilized the crystalline structure of the photoreceptor, whereas the triton effect was limited to the membranous structures of the cell, leaving the photoreceptor unimpaired.
1993
Barsanti, L; Passarelli, V; Lenzi, Paola; Walne, Pl; Dunlap, Jr; Gualtieri, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/29812
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact